10 research outputs found

    Non-contact measures to monitor hand movement of people with rheumatoid arthritis using a monocular RGB camera

    Get PDF
    Hand movements play an essential role in a person’s ability to interact with the environment. In hand biomechanics, the range of joint motion is a crucial metric to quantify changes due to degenerative pathologies, such as rheumatoid arthritis (RA). RA is a chronic condition where the immune system mistakenly attacks the joints, particularly those in the hands. Optoelectronic motion capture systems are gold-standard tools to quantify changes but are challenging to adopt outside laboratory settings. Deep learning executed on standard video data can capture RA participants in their natural environments, potentially supporting objectivity in remote consultation. The three main research aims in this thesis were 1) to assess the extent to which current deep learning architectures, which have been validated for quantifying motion of other body segments, can be applied to hand kinematics using monocular RGB cameras, 2) to localise where in videos the hand motions of interest are to be found, 3) to assess the validity of 1) and 2) to determine disease status in RA. First, hand kinematics for twelve healthy participants, captured with OpenPose were benchmarked against those captured using an optoelectronic system, showing acceptable instrument errors below 10°. Then, a gesture classifier was tested to segment video recordings of twenty-two healthy participants, achieving an accuracy of 93.5%. Finally, OpenPose and the classifier were applied to videos of RA participants performing hand exercises to determine disease status. The inferred disease activity exhibited agreement with the in-person ground truth in nine out of ten instances, outperforming virtual consultations, which agreed only six times out of ten. These results demonstrate that this approach is more effective than estimated disease activity performed by human experts during video consultations. The end goal sets the foundation for a tool that RA participants can use to observe their disease activity from their home.Open Acces

    A Novel Sonification Approach to Support the Diagnosis of Alzheimer’s Dementia

    No full text
    Alzheimer’s disease is the most common neurodegenerative form of dementia that steadily worsens and eventually leads to death. Its set of symptoms include loss of cognitive function and memory decline. Structural and functional imaging methods such as CT, MRI, and PET scans play an essential role in the diagnosis process, being able to identify specific areas of cerebral damages. While the accuracy of these imaging techniques increases over time, the severity assessment of dementia remains challenging and susceptible to cognitive and perceptual errors due to intra-reader variability among physicians. Doctors have not agreed upon standardized measurement of cell loss used to specifically diagnose dementia among individuals. These limitations have led researchers to look for supportive diagnosis tools to enhance the spectrum of diseases characteristics and peculiarities. Here is presented a supportive auditory tool to aid in diagnosing patients with different levels of Alzheimer’s. This tool introduces an audible parameter mapped upon three different brain’s lobes. The motivating force behind this supportive auditory technique arise from the fact that AD is distinguished by a decrease of the metabolic activity (hypometabolism) in the parietal and temporal lobes of the brain. The diagnosis is then performed by comparing metabolic activity of the affected lobes to the metabolic activity of other lobes that are not generally affected by AD (i.e., sensorimotor cortex). Results from the diagnosis process compared with the ground truth show that physicians were able to categorize different levels of AD using the sonification generated in this study with higher accuracy than using a standard diagnosis procedure, based on the visualization alone

    The Triple Tone Sonification Method to Enhance the Diagnosis of Alzheimer’s Dementia

    Get PDF
    Presented at the 22nd International Conference on Auditory Display (ICAD-2016)For the current diagnosis of Alzheimer's dementia (AD), physicians and neuroscientists primarily call upon visual and statistical analysis methods of large, multi-dimensional positron emission tomography (PET) brain scan data sets. As these data sets are complex in nature, the assessment of disease severity proves challenging, and is susceptible to cognitive and perceptual errors causing intra and inter-reader variability among doctors. The Triple-Tone Sonification method, first presented and evaluated by Roginska et al., invites an audible element to the diagnosis process, offering doctors another tool to gain certainly and clarification of disease stages. Audible beating patterns resulting from three interacting frequencies extracted from PET brain scan data, the Triple-Tone method underwent a second round of subjective listening test and evaluation, this time on radiologists from NYU Langone Medical Center. Results show the method is effective at evaluation PET scan brain data

    Age-Related Reliability of B-Mode Analysis for Tailored Exosuit Assistance

    No full text
    In the field of wearable robotics, assistance needs to be individualized for the user to maximize benefit. Information from muscle fascicles automatically recorded from brightness mode (B-mode) ultrasound has been used to design assistance profiles that are proportional to the estimated muscle force of young individuals. There is also a desire to develop similar strategies for older adults who may have age-altered physiology. This study introduces and validates a ResNet + 2x-LSTM model for extracting fascicle lengths in young and older adults. The labeling was generated in a semimanual manner for young (40,696 frames) and older adults (34,262 frames) depicting B-mode imaging of the medial gastrocnemius. First, the model was trained on young and tested on both young (R2 = 0.85, RMSE = 2.36 ± 1.51 mm, MAPE = 3.6%, aaDF = 0.48 ± 1.1 mm) and older adults (R2 = 0.53, RMSE = 4.7 ± 2.51 mm, MAPE = 5.19%, aaDF = 1.9 ± 1.39 mm). Then, the performances were trained across all ages (R2 = 0.79, RMSE = 3.95 ± 2.51 mm, MAPE = 4.5%, aaDF = 0.67 ± 1.8 mm). Although age-related muscle loss affects the error of the tracking methodology compared to the young population, the absolute percentage error for individual fascicles leads to a small variation of 3–5%, suggesting that the error may be acceptable in the generation of assistive force profiles

    A 3DCNN-LSTM Multi-Class Temporal Segmentation for Hand Gesture Recognition

    No full text
    This paper introduces a multi-class hand gesture recognition model developed to identify a set of hand gesture sequences from two-dimensional RGB video recordings, using both the appearance and spatiotemporal parameters of consecutive frames. The classifier utilizes a convolutional-based network combined with a long-short-term memory unit. To leverage the need for a large-scale dataset, the model deploys training on a public dataset, adopting a technique known as transfer learning to fine-tune the architecture on the hand gestures of relevance. Validation curves performed over a batch size of 64 indicate an accuracy of 93.95% (±0.37) with a mean Jaccard index of 0.812 (±0.105) for 22 participants. The fine-tuned architecture illustrates the possibility of refining a model with a small set of data (113,410 fully labelled image frames) to cover previously unknown hand gestures. The main contribution of this work includes a custom hand gesture recognition network driven by monocular RGB video sequences that outperform previous temporal segmentation models, embracing a small-sized architecture that facilitates wide adoption

    Validation of two-dimensional video-based inference of finger kinematics with pose estimation

    No full text
    Accurate capture finger of movements for biomechanical assessments has typically been achieved within laboratory environments through the use of physical markers attached to a participant’s hands. However, such requirements can narrow the broader adoption of movement tracking for kinematic assessment outside these laboratory settings, such as in the home. Thus, there is the need for markerless hand motion capture techniques that are easy to use and accurate enough to evaluate the complex movements of the human hand. Several recent studies have validated lower-limb kinematics obtained with a marker-free technique, OpenPose. This investigation examines the accuracy of OpenPose, when applied to images from single RGB cameras, against a ‘gold standard’ marker-based optical motion capture system that is commonly used for hand kinematics estimation. Participants completed four single-handed activities with right and left hands, including hand abduction and adduction, radial walking, metacarpophalangeal (MCP) joint flexion, and thumb opposition. The accuracy of finger kinematics was assessed using the root mean square error. Mean total active flexion was compared using the Bland–Altman approach, and the coefficient of determination of linear regression. Results showed good agreement for abduction and adduction and thumb opposition activities. Lower agreement between the two methods was observed for radial walking (mean difference between the methods of 5.03°) and MCP flexion (mean difference of 6.82°) activities, due to occlusion. This investigation demonstrated that OpenPose, applied to videos captured with monocular cameras, can be used for markerless motion capture for finger tracking with an error below 11° and on the order of that which is accepted clinically

    A 3DCNN-LSTM Multi-Class Temporal Segmentation for Hand Gesture Recognition

    No full text
    This paper introduces a multi-class hand gesture recognition model developed to identify a set of hand gesture sequences from two-dimensional RGB video recordings, using both the appearance and spatiotemporal parameters of consecutive frames. The classifier utilizes a convolutional-based network combined with a long-short-term memory unit. To leverage the need for a large-scale dataset, the model deploys training on a public dataset, adopting a technique known as transfer learning to fine-tune the architecture on the hand gestures of relevance. Validation curves performed over a batch size of 64 indicate an accuracy of 93.95% (±0.37) with a mean Jaccard index of 0.812 (±0.105) for 22 participants. The fine-tuned architecture illustrates the possibility of refining a model with a small set of data (113,410 fully labelled image frames) to cover previously unknown hand gestures. The main contribution of this work includes a custom hand gesture recognition network driven by monocular RGB video sequences that outperform previous temporal segmentation models, embracing a small-sized architecture that facilitates wide adoption
    corecore